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SUMMARY

The use of test patterns is a valuable vehicle for
monitoring production of large scale integrated circuit
wafers with respect to the expected systems performance of
the circuits., The role of such test patterns is to ascertain
whether salient process contreol parameters are satisfied
during the manufacture of a wafer. A questionable assumption
is that the meamsurements, made at¢ the location of the test
patterns, are indicative of the process control parameters
for the remasinder of the wafer. One anticipates that &
probabilistic validity of this assumption will vary inversely
with the geometric distance between a test pattern and zn
integrated circuit chip.

This paper develops an algorithm, based on a collection
of statistical data, which remedies the uniformity assumption
of process control parameter measurements. It introduces the
concept of a special "test" wafer as opposed te the "production"
wafer, alluded to above., The test wafer consists solely of
test patterns and is used %o gather mesn and varience data of
the process parameters for the production runs. Because the
process parameters are determined for an entire test wafer,

one can statistically relate process parameter variation on
the wafers.
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Assume that the acceptance ranges for the parameters have
been defined. By utilizing measurements of test patterns that
are already present on production wafers, Bayesian analysis
can be performed on the aforementioned statistical data.
Consequently, a parameter distribution can be obtained which
incorporates both the parameter measurements ususlly available
and statistical information reflecting perameter non-uniformity.
The above approach, together with an acceptance range for the
parameter and a percentile confidence, enables a confidence
interval to be established for the production wafer test
pattern data. Usually, this confidence interval csn be computed
prior to testing subseguent production wafers. Thus afier an
initial test wafer anulysis phase, testing of production wafers
proceeds as usual. The algorithm only modifies acceptance
ranges of conventional test data.



T, INTRODUCTION
Recent efforts in improving integrated circuit reliability have led
to more critical evaluation of the entire manufacturing process. One
of the primary reasons for this increased concern in reliability is that
more and more circuitry is being integrated into chips. Today large scale
MOS memories, shift registers, and calculator systems are available as
single chips. Soon computer subsystems will be available as unit devices.
Increased lead count and circuit complexity have already made exhaustive
testing of large scale integrated circuits (LSI) economically unfeasible.[l’2]
It is also obvious that increased circuit complexity implies the need for
increased reliability at the transistor level.
In the face of the growing problems brought on by larger integration,
it has become increasingly important to control the manufacturing process
at its many stages. Within the scope of existing process contml, better
design techniques can be incorporated which will "build-up" reliability.[B]
If the integrated .circuit process technology is to be controlled,
there must exist means for monitoring the effect of the process parameters.
More specifically, there must be some correlation possible between measurable
circuit parameters and the parameters of the fabrication process.[4]
For example, diffusion characteristics control transistor characteristics
such as gain and leakages. By measuring the electrical characteristics
of a single transistor, it is possible to infer what the process parameters
were which produced it. It must be realized that for a single wafer, the

effects of the process vary over the wafer. If there are many transistors



on the wafer, the value of gain for the transistors will be distributed
over some nominal range.

Techniques for the process control of silicon integrated circuilt
quality and reliability at the wafer level have been studied and
implemented by many research institutes as well as integrated circuit
manufacturers.[5"lo] The control techniques vary from a single test
transistor and capacitor on each chip to several test patterns on each
wafer. These test sites are used to monitor and evaluate diffusion
characteristics, wafer and oxide purities, mask alignments, product yield,
product life, as well as unusual failure mechanisms which may occur
due to stressed conditions.

To demonstrate the variations of testing procedures within the IC
manufacturing field, several manufacturers were contacted. Among them
were RCA and Solid State Scientific, Inc. The RCA testing procedure
consists of five test patterns which are strategically placed on each
wafer. Fach test pattern consists of an NPN transistor, a PNP transistor,
a capacitor, and a resistor. Among the measurements made on each test
pattern are Viy, ID and VDS on the transistors, the capacitance of the
capacitor, and the resistance of the resistor. Each pattern must fall
between specified limits for the wafer to be accepted.

Solid State Scientific, on the other hand, places one test transistor
and one capacitor on each chip to be tested randomly for Vip, ID, VDS’
and capacitance. If these test patterns lie within fixed limits, the

wafer is accepted.

These examples reflect the current approach to process monitoring.

It is inherently assumed by these procedures that the test transistors and



capacitors represent the condition of the entire wafer on which they lie.
The acceptable range of each parameter is supposed to reflect the range
within which the circuit elements will operate acceptébly in a circuit . and
within which the failure mechanisms will be minimized. The way in which
these parametric ranges are established is often through much experience
with simple circuits or the circuit elements themselves. Extrapolation
to complex circuit configurations is always questionable. To the degree
that topological sensitivity analysis can be conducted, this extrapolation
is often defendable. But it must be realized that even then, it is usually
assumed that the parametric measurements on the test section of an
integrated circuit are assumed to characterize the entire circuit physics.
The use of test transistors to monitor the above mentioned process'
parameters becomes less meaningful as the area of the integrated circuit
"peal-estate" increases. One cannot assume that these parameters will
remain constant over-the large area of LSI circuits. Only a few isolated
test sites can be placed on a chip, and then only on the perimeter. Direct
circuit probing is not feasible due to the relative size of probes compared
to that of high-density circuit elements., Since they are not isolated,
circuit elements cannot be individually tested. Thus, it is apparent that

one cannot determine spatial parameter variations directly for an I. C.

- STATISTICAL APPROACH USING TEST WAFERS

In attempting to overcome the difficulty of accounting for significant
parameter variation over the area of an I. C., it 1s natural to turn to a
statistical approach. We wish to incorporate prior knowledge of spatial
parameter variation with the information acquired by testing the few test

sites on the production wafer. Using these two sources of information plus



the a priori knowledge of the acceptable range for the parameters, we
wish to obtain an improved decision rule for accepting or rejecting
the wafer. It is assumed that circuilt element models and the particular
circuit topology provide sufficient information for direct determination
of this acceptable parameter range.[ll]

Since prior knowledge of the parameter variation is required for the
proposed approach, let us first consider of what this knowledge is to
consist and how such information can be practically acquired. In a sense,
one can assume that the parameters are independent so that each may be
considered separately. We will also assume that a single test pattern
is sufficient to perform the electrical measurements required for
determining the parameter value at the site of the test point. Furthermore,
regard the test pattern to be sufficient for evaluating all parameters
of interest. These requirements are stated in the interest of simplifying
the presentation of what follows. An extension to a more general case
will be discussed later.

Let us now consider the source of variation of a process parameter.
The variation will occur at two primary levels. Since control over the
process is not perfect, the parameter will vary from run to run. The
"nominal" or average value for a particular wafer reflects the value for the
"run" or "heat" in which it was produced. The second source of variation is
the variation of the parameter over a given wafer. This spread corresponds
to a variance with respect to a mean. The variance will be assumed
statistically independent to the mean value and known., The way in which

this value can be determined will be considered shortly.



Our prior statistical knowledge can be specified as follows. On
any wafer, the parameter is considered to be normally (Caussian-normal)
distributed with unknown mean and known variance. The mean, which is a
random variable with respect to a run, can also be regarded as normally
distributed with known mean and variance. The choice of normal distributions
enable closed form solutions of the mathematics that follows. It is also
a natural choice from the fact that continuously distributed variables
are often normal. Non-normal distributions are considered briefly in
the concluding sections.

In order to determine a distribution for the mean, we consider a

special "test" wafer as illustrated by Figure 1.
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Figure 1. Test wafer.



This wafer is made up entirely of test pattern sites. ZEach site is a

test pattern appropriate for making electrical measurements relating to the
parameter value at that point. The sites also include the necessary probe
lands. By testing all test sites, the mean and variance for each test

wafer can thus be determined. A large number of these test wafers are
initially produced in many different runs. They may be randomly scheduled
along with the regular production wafers. Once these wafers have been
produced and tested, the distribution for the parameter mean can be
determined. Using the average parameter values of each test wafer, a mean
and variance is computed, and these two values then determine the distribution
of the wafer mean, p.. This distribution was determined for test wafers
only, but it is assumed that the process parameter will be distributed over a
wafer according to statistics which are independent of the type of wafer,
This follows from the fact that the test wafers and the production wafers are
manufactured in common runs. Thus, the distribution of the parameter mean is
assumed to correspond to both types of wafer. We determine the distribution
using test wafers, but we will use it for the production wafers.

The wafer variance, that is the variance of the parameter on a given
wafer, is also determined from the data gathered on the test wafers. The
sample variance for each test wafer is computed, and then the average of
these values is used as the wafer variance, g;j . This value is thus an
expected value. As previously stated, the wafer variance is assumed to be
constant for each wafer, whether it be a test wafer or a production wafer.

It should be pointed out that the distribution of the mean is assumed

time-invariant. Also, there is an assumption that the parameter spatial



variation is not correlated with the spatial position on the wafer.
That is, knowledge of the relative or absolute spatial position of a point
on a wafer does not introduce any significant information as to what
the parameter value will be. When this is not an appropriate assumption,
and a specific correlation does exist, it should be taken into account.
For instance, if the perimeter of a wafer tends to have lower parameter
values, one may choose to avoid placing chips near the perimeter and also
not have test patterns in this region. The period during which the
initial data is gathered on the test wafers corresponds to a learning
period, During this period, one can also observe whether the assumption
of normally distributed random variables and lack of spatial correlation
are really valid. One can also determine if a constant variance is a
valid assumption.

The prior knowledge of parameter variation has now been specified.
In the next section, we consider how to incorporate this information in a
statistically based testing procedure.

Tl MATHEMATICAL ANALYSTS

It would be useful to know the parameter probability distribution for
each production wafer. Using this distribution it would be possible to
establish a decision rule on accepting or rejecting the wafer relative to an
acceptable range for the parameter. Since this distribution is unknown in
practical situations, we wish to consider how the information obtained via
the test wafers can be combined with the information available from measuring

the limited number of test sites on the production wafer.



Let us now review the previous statistical formulation in a
precise manner. It is assumed that the parameter in question exhibits
a normal distribution with known variance, oi and unknown mean Mo The
mean is also assumed to be a random variable with known mean B and

2

varilance 02 . It has been previously stated how Mo 02, and o, are obtained.
m m

These statistics apply to both the test wafers and the production wafers.

At each of N test sites on a production wafer, the parameter X may be

evaluated resulting in the N values Xq,

X5seee,X A Bayesian approach

e
will be used to obtain a revised distribution for the mean, .. conditional
on the N measurements on the production wafer. Then this revised distribution
will be employed to obtain the distribution of the parameter on the
particular test wafer being examined.

The first step may be obtained from Breipohl's paper[lz] on Kalman
filtering. It must be assumed that the measurements at the test sites
may be regarded as independent events characterized by the parameter
distribution. If the distance between test sites is large compared to the
diameter of the test site, and if no significant spatial correlation exists
between test points, this may be reasonable assumption. (During the learning
period in which test wafers are used, the existence of high correlation to
spatial position can be determined.)

Restatipng Breipohl's results’ in our notation, the Bayesian revised

distribution is found to be normal with mean
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and variance

(2)

where the second subscript denotes the revised estimate conditional on N

observations. We immediately observe that
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which is the sample mean, and that

A
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The results of (3) and (4) are expected since as the number of observations
on the product wafer grows large, the sample approaches the population.

It is now possible to obtain an estimate of the distribution for the
process parameter. The parameter distribution was specified in terms of a
known variance, but an unknown mean, and it was assumed normal. The density
function can be considered as a conditional probability density function,
It is conditional since it depends on the value of the mean, where this
mean is in turn specified through an absolute distribution. Let the random
variable |, correspond to the mean, and let the random variable Y correspond to the
parameter value at some point on the production wafer. Let the following density

functions be defined that characterize the conditional situation. From the




above discussion, we write the revised distribution for the wafer mean as
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The density function for the parameter distribution, conditional on the wafer

mean value is
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To determine the absolute density function for a parameter measurement, one

integrates the product of (5) and (6) as
f T f
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Substituting (5) and (6) into (7), one obtains
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If the terms of the exponential are expanded, put over a common denominator,
- 1 ; ; ;
then collected as coefficiets of 92, e, and Qo, and finally normalized with

respect to 92, the exponential expression can be written as
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It would be helpful to obtain a normal form with respect to the varialbe
of integration. ©, since then the integration could be easily done. To obtain
such a form, one must complete the square of the quadratic in 6. Doing this,

the exponential expression becomes
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We are now in a position to write the integral in a standard form. The second
expression in the exponent as given by equatian(9) can be moved outside the
integral due to the property of exponentials, since it is constant with

respect to the variable of integration. Equation (8) can now be written as
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is accepted. If the level falls between these two thresholds, additional
testing is carried out. The process stops when either no more test sites
are available (rejection), or when absolute acceptance or rejection has
occurred. The selection of the two thresholds and the number of test
sites probed at each step of the sequence will be heuristic at best.
. IMPLEMENTING STATISTICAL PROCESS CONTROL

It would be very difficult to define an absolute program for implement-
ing the methods discussed so far. This is true because decision on various
phases of process control must be based on complex information. Often,
the experience of the process control engineer cannot be established in
a well organized format. Nevertheless, a simple adaptation of the above
techniques will be described in order to illustrate the fundamental
features of our statistical approach.

Figure 2 shows how the production of an integrated circuit might
utilize a statistical approach for process control. After the circuit
is designed, sensitivity analysis is performed in order to determine
the range of values for each parameter which suggests satisfactory
circuit performance. In general, these ranges may be interrelated so that
one must consider the acceptable range as a multidimensional surface., It
will be assumed that the parameters may be considered separately in order
to simplify the discussion.

The next step involves the circuit topology. Since a parameter range
must be satisfied at many locations on the integrated circuit, the event
of an acceptable parametric distribution represents the intersection of

many simultaneous events. For instance, suppose the circuit contains ten
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The integral is in Guassian-normal form and is equal to one. We therefore

obtain
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which is also of the Guassian-normal form. The distribution for the process
parameter Y is therefore normal with the mean given by equation (1) and variance

given by 2
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The effect of the uncertainty of the wafer mean is to increase the a priori
variance by the variance of the mean distribution. From (2), it is again
clear that as the number of test sites on the production wafer is increased,

the variance corresponding to the distribution of the process parameter on this
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wafer approaches the a priori variance. For this reason, one may choose
to use the sample variance computed using the test data of this wafer for
(Ti rather than the average value previously mentioned. The choice can be
made after observing the results of the test wafers. When the variance is not
consistent from wafer to wafer, the sample variance becomes the better choice.
The problem of using the distribution of a process parameter to defime
an acceptance decision rule is still not entirely resolved, at this point.
If only a single location of the I. C. chip was gffected by the parameter,
one would simply determine the area under the density function curve over the
interval of the acceptable range and compare the resultant probability to
a threshold value. If the density function area was greater than this threshold,
the wafer would be acceptable and if less than this value, rejection
would occur. Even the decision on the threshold would be a complex task
involving many economic factors. When one can identify a discrete number
of wafer areas sensitive to the parameter, on the chip, one can raise the
probability corresponding to the acceptable range to the power equal to
this number, thus implying independent Bernoulli trials. When a discrete
number of such areas cannot be identified, one must resort to some soul-
searching to "pick" a confidence level.
Finally it is possible to define a sequential testing procedure[l3]
using the above techniques. We have previously assumed that all test sites
on a production wafer are probed. One may instead probe only afraction
of these sites providing selection is randomized. Two thresholds must be
defined. If the probability level corresponding to the parameter range of

acceptance is less than the smaller threshold, the wafer is immediately

rejected. If this probability level is above the higher threshold, the wafer
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transistors. If the parameter value for each one can be considered an
independent event, then the probability of all of them having an acceptable
value is equal to the probability of a random transistor having an acceptable
value, raised to the tenth power. Often it is not possible to represent the
circuit in terms of a discrete number of independent events. Parameter
effects are not usually contained in discrete locations, nor is the effect
at one location absolutely independent of the effect at another. Thus the
power that one might raise the probability of a single event is a subjective
number. We shall assume that the confidence level can be selected, and is
known a priori,
Once the process parameter ranges have been selected, test wafers are
produced under the process conditions of production wafers. The test
wafers are made entirely of primative test patterns normally found on the
production wafer. After a sufficient number of these have been produced
and tested for parameter values, the distribution of the mean value of the
wafers and the average wafer variance can be computed as previously described.
This prior distribution can be used to provide an indication of the
level of wafer acceptance. Using equations (1), (2), and (10) by letting
N =0, (i.e. prior to product wafer test), the distribution for the parameter
on the production wafer is normal with mean |, and variance equal to the sum
of &,’i plus G'Ii . Using this distribution, one can compute the probability
corresponding to the acceptable parameter range and the topology determined
exponents described previously. This probability can be regarded as
the prior probability that a production wafer will be acceptable. A
decision must be made as to whether this acceptance level is desirable.

If the indication rejection rate due to the parameter is unreasonable, then
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either the process must be adjusted or the circuit must be redesigned to
allow for less sensitivity to the parameter variation. Again, this
decision is subjective.

Once the prior acceptance rate is deemed usable, the testing of production
wafers can proceed. If the number of measurements on a production wafer is
fixed, it is a simple matter to determine the range of value for the sum
of these measurements that leads to acceptance of a wafer. This may be
verified by observing that only equation (1) requires the values of the
measurements. The determination of the acceptable range of the measurements
can be accomplished prior to production wafer testing. Thus the only
computation required during the production acceptance testing is summation
of the test results, and then threshold comparisons. Even if the number of
tests, N, can vary, threshold values corresponding to each N can be determined.
Thus once the initial steps of the flowchart of Figure 2 are obtained,
acceptance testing of wafers using the statistical approach is very
simple.

It should be pointed out that all testing, whether on test wafers or
production wafers, should be preceded by visual inspection. Cosmetic
defects are removed by neglecting the affected area, whether it be test
transistor or chip. This is one reason for computing separate thresholds
for different values of N. On a production wafer, a chip having a cosmetic
defect should be "scratched" and its test transistors not used for parameter
screening. Justification of this follows from the fact that visual
inspection can normally occur prior to chip testing and because the event
of a cosmetic defect can be considered independent of parameter variation

statistics.
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1., NON-NORMAL DISTRIBUTIONS

Let us consider briefly how the above techniques apply to the
situation in which either the parameter distribution, or the mean
distribution, is non-normal. In this situation, the use of the test wafer
to gather a prior distribution for the mean is still appropriate. The
major difference lies in the computational procedure. Since generally
the integration required for the Bayesian analysis and for the evaluation
of equation (7) do not yield closed-form solutions, numerical integration
must be used. Since both such computations require: the data from the
production wafers, it is clear that prior determination of the confidence
interval for a parameter is not possible as in the Normal case. The
computations involving the Bayesian analysis and equation (7) must be
done after the test patterns on a production wafer are probed. This
requires a computer to be on-line with the wafer inspection station.
Either a time-sharing terminal or a dedicated mini-computer can perform
the necessary requirements.
CONCLUSIONS

The statistical approach to process control as outlined in this
paper allows one to consider the effects of process parameter variations

Oaly statohienl apgronhey appear  Lensivie since)

for production Wafers.§;£ﬁrect monitoring of this variation is presently
beyond the state-of-the-art for complex, large scale integrated circuits.
By the use of test wafers, it is possible to obtain an estimate of the
distribution of the effective parameter values. Bayesian analysis allows
this estimate to reflect the dynamics of the data obtained from a

limited number of parameter measurements on the production wafer.
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When the wafer mean corresponding to a parameter and the parameter
itself have normal distributions, closed form solutions are obtainable
for the parameter distribution on the production wafer. Because of this,
much of the algorithm computations can be carried through prier to actual
testing of the production wafer. This allows for easy implementation of
process control related to monitoring process parameter-variationsu

Lack of a normal distribution usually results in great difficulty for
finding closed form solutions to the Bayesian revision of the mean
distribution and/or the final estimate of the parameter distribution.

In this case, the mathematics is similar, but the solution must be
obtained numerically. Thus computation must be repeated for each
production wafer, making implementation of the statistical techniques
dependent upon on-line computer capability.

When the parameters cannot be considered separately, the approach
becomes complex. Such a situation arises when the acceptable ranges for
the parameters are dependent. The distribution estimation based on the
testing procedure is as before, assuming that the parameter values themselves
are independent random variables. What does change is the decision step in
which the probability of acceptable parameter values is computed. If the
decision function is a linear function of the parametric value, this
function is a linear combination of independent random variables. Then the
distribution of the decision function involves a convolution of the distri-
butions of all the parameters. If all the parameters are normally distributed,

the convolution can be simply evaluated without direct computation.[l4]
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The ma jor problem may occur in evaluating the decision function. The
acceptability region may be specified as several inequalities. Linear
programming techniques or pattern recognition theory can be used in this
situation. When the decision surface is nonlinear, both the determination
of the decision function and the distribution of this function must be

obtained by more complex techniques not considered here.
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