STATISTICALLY BASED INTERPOLATION AND
EXTRAPOLATION IN AUTOMATED TESTING SYSTEMS*

Frederic H. Herman and Thaddeus J. Kobylarz
Systems Design and Analysis Co.
West New York, New Jersey

b

c

Abstract
This paper addresses itself to the problem of automatically testing systems
which are representable by continuous, instantaneous functions. It is assumed
that the tests are controlled and analyzed by a digital computer. Since discrete
measurements are required, interpolation and extrapolation must be considered.,
In order to circumvent the deficiencies of conventional methods employing
deterministic approaches, statistically based interpolation and extrapolation

methods are described.

1. INTRODUCTION

Automated testing of systems, which are represent-
able by instantaneous continuous functions, is
typically controlled by a digital computer. In
addition to controlling the test, the results are
analyzed by the computer to determine if the
input/output function satisfies predetermined
constraints of acceptability.

A disparity exists in that the systems being
tested are continuous and the systems performing
the tests are discrete. A number ?f important
problems arise from the disparity. 1) For example,
it is obvious that exhaustive testing is not
possible. Economy closely governs the number and
location of test points allowable for a given test.
A certain amount of time is required for the con-
version of data between analogue and digital

forms. Furthermore, testing may involve non-
electrical inputs such as temperature, pressure,
and humidity. Outputs may also be non-electrical.
The testing system may be limited in the range of
inputs that it can simulate. Field-testing of
systems may require that the automated tester be
far less complex than its laboratory counterpart.

Since the response function must be evaluated
between the discrete test points, it is apparent
that interpolation and extrapolation are vital
considerations for such automated testing systems.

Deterministic approaches, such as power series
curve-fitting, have a serious deficiency. While
methods such as least squares curve-fitting,
enable the average error to be monotonically
reduced as the order of the fit is 1ncreased,(2)

~absolute error bounds are either impossible to
,obtai? r are so crude as to render ?h m value-
‘less. 4
.example of error bounding methods in which it

The "Bernstein polynomial" is an
can be assumed that the response function is

uniformly continuous. This method yields an

extremely pessimistic measure of the error.

In order to circumvent the deficiencies of
conventional methods, a probabilistic approach to
interpolation and extrapolation is taken. It is
assumed that the systems to be tested come from a
large population and that it is possible t- obtain
the probability distribution of the imput/output
derivative as a function of the input. Thus a
"learning period" is required in which many devices
are tested much more thoroughly than is economically
feasible in the field. Due to the averaging
characteristic of statistics, the distribution
itself will vary more "smoothly" over the input
range than the input/output response function of
any part%g&lar system., For instance, the dena%%{
function may be found to be Guassian-normal

in which the mean and the variance are functions
of the input. In this paper we consider how

such information can be used to automatically

test additional systems, for which economically
constrained testing exists.
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2. BASIC TECHNIQUE

Consider a system having an input/output function
f(x) which is continuous, time-invariant, but
allowably non-linear. Assume that the probability
distribution of the input/output derivative

df (x)/dx is, in general, x dependent, i. e.

p{agy'(x}gb} fbh (x,2)dz. (1)
a

where: y'(x) = at(x) .

dx
An example of such statistical knowledge can
correspond to a normally (Gaussian—normal)
distributed derivative, having a mean and
variance as some known function of x.

At some X,, the system is tested for its response
y(x_.). We wish to combine the knowledge of this
teb% result with our previous statistical infor-
mation. From the requirement of f(x) continuous,
there is some perturbation Ax for which f(x) is
nearly linear in the interval (xg, x_+ AX).

(One may verify this by considering the Taylor
expansion of f(x) about x .) Therefore, for this
perturbation, we have ©

Y(rg"8x) % ¥(x,) + bxeyt (x). (2)

Let us choose some confidence interval for the
random variable y'(xo);for some confidence value
o

o = p{a < y'(x) < b} = Ibh(xo,z)dz. (3)
a

For a non-symmetric density function, it is some-
what arbitrary how one picks the confidence
interval (C. I.) since the mode and the mean do.
not generally coincide. In order to simplify
what follows, we assume symmetry and take the

C. I. about the mean of the distribution.

Using the C. I. boundary in equation (3), a

C. I. is obviously establigshed for y(x *thx).
Thus,

o = p{Y(Xo)’8-AXSJ(XO*AX)sy(xo)+b-Ax}. (4)

For a negative excursion, assuming the same Ax
is appropriate, one has

@ = oyl b iy (rortrdey(xyan}. - ()

Figure 1 depicts equations (4) and (5).
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Fig. 1 Simple extrapolation.

The above basic process allows extrapolation of
confidence bounds from a point of measurement

corresponding to deterministic data. The stat-
istically based extrapolation introduces a Ce I,
not occuring in conventional methods. Additionally,
some perturbation error is present from the approx-
imate nature of (2). It is assumed that Ax is
taken small enough to make this error negligible.
One may easily extend the simple process described
above to an interpolation scheme. Once the single-
point extrapolation has been completed, a second
increment is chosen appropriate for equation (2).
Denote it as Ax,, indicating that it was chosen

at x; = x0+Axo+&x . The system is tested for

its response at x; and then single-point extrap-
olation is performed at the point Xy. Figure 2
illustrates the result.
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Fig. 2 Simple two-point interpola tion.

In general the two bounds at x +Ax , resulting
from x, and x,, will not coincYde gut will have
some region of intersection, if the confidence
level is large (o> .95). Lack of intersection
means that at least one of the random variables,
y(xo) and y(x;), was actually outside its
corresponding C. I. Additional testing is required
at X, *Ax, for each case of lack of intersection,
but such an occurance is only (1-o2) probable.

For o = .96, the probability of non-intersection is
.0784 or 7.84%. This computation assumes
independence of the two bounds. If an inter-
section exists, one may use the intersection as

the composite C. I. with probability a?. The
overall bounds on f(x) in the interval (x ,xl)
then is formed by reducing the C. I.'s ©

for each random variable until they both coincide
with the intersection, I (see Figure 2).

The above interpolation scheme can be cont inued
to the right and to the left to include any
overall increment. Between deterministic test
points, f(x) is bounded. This bound is piece~
wise linear and can be represented as two piece-
wise linear functions.

3. EXTRAPOLATION BY ITERATION

It is obvious that even the above scheme will
often require an enormous number of test measure-
ments. When Ax must be kept very small, the
simple statistical based interpolation and
extrapolation may offer only a small advantage
over conventional means. The statistical infor-
mation will now be used to fuller advantage.




Consider the following construction,
to Figure 1, at x

Referring
+Ax,, a C. I. has been
established (y(x03+a-Ax0, ¥(xg) + b-Ax,). At

each of the C. I. boundaries, construct a C. I.
as if each of these points were actually test
measurement data. Call the point xo+Axo,x1.
Using these two C. I.'s, a C. I. can be
constructed which corresponds to the value
y(xlfo ). The maximum of this C. I. is simply
the maxlmum of the C. I. constructed from
(x9,y(xg)*b+Axy). Similarly, the minimum of
the C. I. for y(x3+Ax,) is the minimum boundary
of the C. I. constructed at (xl,y(xo)+a~Ax ).
Figure 3 illustrates the process in which two
iterations have been executed. Note that this
could be done bilaterally. at Xge
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Fig. 3 Iterative extrapolation.

Also it is apparent that the bounds thus
formed result in a diverging overall bounds on
v(x). As we wish to consider differential
intervals shortly, we must be assured that the
rate of divergence is not a function of the
number of iterations, but of the extrapolation
distance, x-x,. It is clear that the density
function of population of continuous functions
is itself continuous. One only needs to consider
the parameters of a distribution. Typically
they can be represented as continuous functions
of the popu%agion values summed over the entire
population. %) Thus they are continuous functions
of continuous functions and are therefore them-
selves continuous. Hence by making Ax small
enough, the density function of y'(x) can be
made approximately constant over a iteration
interval. Inspection of the iterative construct-
ion and Figure 3 reveal that for a density
function, constant over some interval, the number
of iterations used to span the interval has no
effect on the iterative C. I.

“As the iteration interval becomes a differential
distance, the C. I. limits become continuous -
functions of x. If o is fixed and the C. I.
is uniquely defined,* then at each x, these
limit functions can be evaluated, such that

o = [ 255 ae. (6)
a(x,a)

*It was previously assumed that only symmetric
distributions would be considered here, and that
C. I.'s would be symmetric about the mean.
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Moreover, they are derivative functions and can
be integrated to obtain the C. I. boundary curves.
Thus the upper and lower boundaries of y(xr) are,
respectively

Xy .
) = y(x) + [ blx,max =

X
o

(x
yu,u‘ r

y(xO) * B(xr,d) = B(Xo,d)
X (7)
Yi,a (Xp) = ¥(x) +f T a(x,a)dx =
X
o

J (XO) * A(xrla) = A(XO,O').
for X, 2 xo.
Similarly, for extrapolation to the left of Xgs

X
yu,a(xl) = y(x,) +I 1a(x,a)dx =
X
o]
Y(Xo) * A(xl,a) - A(xo,a)
" (8)
Yp,a (1) = ¥(x) +f Ly(x,a)ax =
X
o
y(x,) + B(x;,@) - B(xy,a).

for x X o
1 s o

Note that the computations during the actual
testing can be minimized if the functions A(x,w)
and B(x,a) of (7) and (8) are precomputed for

the desired confidence value, o. This is
possible since, both of the functions depend only
on the distribution of f'(x), the derivative of
the system response function.

The construction of iterative extrapolation is
intuitively appealing. One feels that the

bound so constructed must be at least o probable.
This feeling comes from our apparently taking
the worst case at cach iteration. However, it
is not always true that the construction will
yield a C. I. of probability o or better. One
can formulate situations such as an ¢ _..nentially
distributed derivative using a low value of «,

in which it is possible to show that iterative
extrapolation does not result in a confidence

of at least o. Very briefly, the iterative
extrapolation corresponds to a linear combination
of random variables. If they can be considered
independent, one must examine the n-ary
convolution of the distributions. It must be
shown that the area under the convolved
distribution, between the limits corresponding

to the iterative C. I., is greater than or equal
to @. Although no general necessary conditions
appear to 23 tractible, it has been shown
elsewhere( that it is sufficient for the random
variables to be normal. Also, many mono-modal
symmetric density functions give comparable
results.



4. ITERATIVE INTERPOLATION

The iterative construction in the preceding
section, can be utilized in an interpolation
scheme., This extension proceeds in a similar
manner to the extension of the simple extrap-
olation of Section 2. Observe in Figure 4

that iterative extrapolation was performed at
X, and x.. The intersection of the two bounded
regions Is taken as the composite or interpolated
C. I. When no intersection occurs or is very
narrow with respect to each of the individual
C. I.'s, it is necessary to measure the systems
Tesponse at an additional point between Xy and
Xy. Similarly, when the composite C. I. is
excessive between these two points, additional
System measurements are made, in the region
that the C. I. was excessive. Also, when some
a'priori acceptable region for £(x) is defined,
additional measurements may be made when the
composite C. I. exceeds this region. Any one
of' these situations lends itself to an adaptive
feature. That is, analysis of the measured data
can decide the need and location of additional
measurements . Composite C. I.

f(xl)

£(x,)

X X
o 1
Fig. 4 Iterative interpolation.

5. CONCLUSIONS

The two statistically based interpolation and
extrapolation techniques offer some advantage
over conventional methods. In testing a system
Trepresented by a continuous time invariant
Tresponse function, it is usually of interest

to determine if the function lies within some
acceptable bounds., The incorporation of
statistical information enables one to avoid the
usual deficiencies of conventional extrapolation
and interpolation and in particular reduce the
burden of the number of measurements on the
system.

The major problem with using the statistiéally
based techniques is the requirement of the
derivative distribution. While in some physical
situations, derivatives are available directly,
one may in general require numerical differen-
tiation. This can give rise to severe errors
in some cases, so that derivative determination
may not be feasible. Even if this problem

does not occur, it is apparent that much data
must be collected to determine a reasonably
good estimate of the derivative distribution.
Although the initial investment in obtaining
such statistics may be severe, the later
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savings in testing systems may justify the cost.

A final problem associated with the iterative
procedures is that the derivative values at
different points are considered independent,
Since the statistics are gathered as absolute
probabilities, the independence assumption is
a naive approach and can be expected to result
in a more pessimistic C. I. than if conditional
density functions were used. However, the use
of absclute density functions simplify the
practical aspects of data gathering and
computation,
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